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1. Introduction

The first mass transfer problem was considered by Monge in 1781 in his
mémoire sur la th́eorie des d́eblais et des remblais, a civil engineering prob-
lem where parcels of materials have to be displaced from one site to another
one with minimal transportation cost. A modern treatment of this problem
has been initiated by Kantorovich in 1942 (cf. [23] for the english version),
leading to the so-called Monge-Kantorovich problem which has received
a considerable interest in the recent years, with a wide range of potential
applications and extensions. A recent comprehensive review can be found in
the new books by Rachev and Rüschendorf [31], the lecture notes by Evans
[19] and the review paper by Mc Cann and Gangbo [21].

The framework of the Monge-Kantorovich problem is as follows. Two
density functionsρ0(x) ≥ 0 andρT (x) ≥ 0 of x ∈ R

d, that we assume to
be bounded with total mass one∫

Rd

ρ0(x)dx =
∫

Rd

ρT (x)dx = 1,(1)
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are given. We say that a mapM from R
d to R

d realizes the transfer ofρ0 to
ρT if, for all bounded subsetA of R

d,∫
x∈A

ρT (x)dx =
∫

M(x)∈A
ρ0(x)dx.(2)

If M is a smooth one-to-one map, (2) just means

det(∇M(x))ρT (M(x)) = ρ0(x),(3)

wheredet denotes determinants ford×d matrices, which is often refered as
the jacobian equation. The jacobian problem, consisting in finding such a
mapM , givenρ0 andρT , has been solved by Moser [27] and Dacorogna and
Moser [17] with two different constructive methods that can both lead to ef-
fective numerical algorithms (see [7] for applications in Chemistry). Clearly
the jacobian problem is underdetermined and it is natural to select among
the maps satisfying (2) those which are optimal in a suitable sense. One
way is to introduce the so-calledLp Kantorovich (or Wasserstein) distance
betweenρ0 andρT defined by:

dp(ρ0, ρT )p = inf
M

∫
|M(x) − x|pρ0(x)dx,(4)

wherep ≥ 1 is fixed,|.| denotes the euclidean norm inR
d and the infimum

is taken among all mapM transportingρ0 to ρT . Whenever the infimum is
achieved by some mapM , we say thatM is an optimal transfer and solves
theLp Monge-Kantorovich problem (MKP).

Two exponentsp are particularly interesting. The original Monge trans-
fer problem corresponds top = 1 and has been studied by Sudakov [35]
(see [19] and the relationship with sandpile models). The casep = 2, the
only one addressed in the present paper, has remarkable properties and, as
we shall see, is directly related to continuum mechanics. Let us just briefly
mention the theoretical importance of theL2 MKP in many different fields
such as probability theory and statistics [31], functional analysis [3], kinetic
theory (where theL2 Kantorovich distance is closely related to the homoge-
neous Boltzmann equation of maxwellian molecules and the Fokker-Planck
equation [36,22]), atmospheric sciences (where the construction of the semi-
geostrophic model by Cullen and Purser is based on a variant of theL2 MKP
[16,6]), astrophysics [26], porous media equations, Hele-Shaw equations
(with the new approach introduced by Otto for dissipative PDEs viewed as
gradient flows with respect to theL2 Kantorovich metric [28,29]). From a
more computational point of view, the Kantorovich distance is a valuable
quantitative information to compare two different density functions, which
may be used in various fields of applications, such as shape recognition in
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image processing, computer vision and signal treatment, data assimilation
in meteorology and oceanography, quantum chemistry etc.

Let us recall a basic theoretical result on theL2 MKP ([24,8,10], see
also [31,21,19]): there is a unique optimal transferM characterized as the
unique map transferringρ0 to ρT which can be written as the gradient of
some convex functionΨ ,

M(x) = ∇Ψ(x).(5)

Moreover, because of (2),Ψ is a solution (in a suitable weak sense) of the
Monge-Amp̀ere equation

det(HΨ(x))ρT (∇Ψ(x)) = ρ0(x),(6)

(whereHΨ is the Hessian matrix ofΨ ). MoreoverΨ inherits the smoothness
of ρ0 andρT under additional geometrical conditions, as shown by Caffarelli
[13].

It follows from this theoretical result that a natural computational solution
of theL2 MKP is the numerical resolution of the Monge-Ampère equation
(6). Unfortunately, this fully non-linear second-order elliptic equation has
not received much attention from numerical analysts and, to the best of our
knowledge, there is no efficient finite-difference or finite-element methods,
comparable to those developped for linear second-order elliptic equations
(such as fast Poisson solvers, multigrid methods, preconditioned conjugate
gradient methods,...). In addition, the mass transfer problem involving (6)
is not a standard boundary value problems even whenρ0 vanishes along a
smooth subset ofRd. A geometrical method has been designed at the UK
met’office by Cullen and Purser [16,14], in view of the numerical resolution
of the semi-geostrophic equations, using an approach similar to Pogorelov’s
constructive proof of existence for the Monge-Ampère equation [30]. A
similar method is used in [25] for the design of antennas. A domain decom-
position method for problem (6) has also been proposed in [4] and used for
a simplified semi-geostrophic model in [5].

In the present paper, we introduce an alternative numerical method for
theL2 MKP, avoiding the direct solution of (6), based on a resetting of the
mass transfer problem into a continuum mechanics framework. To do that,
we fix a time interval[0, T ] and consider all possible smooth enough, time-
dependent, density and velocity fields,ρ(t, x) ≥ 0, v(t, x) ∈ R

d, subject to
the continuity equation

∂tρ + ∇ · (ρv) = 0(7)

for 0 < t < T andx ∈ R
d, and the initial and final conditions

ρ(0, ·) = ρ0, ρ(T, ·) = ρT .(8)

Then, we will observe
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Proposition 1.1 The square of theL2 Kantorovich distance is equal to the
infimum of

T

∫
Rd

∫ T

0
ρ(t, x)|v(t, x)|2dxdt,(9)

among all(ρ, v) satisfying (7) and (8).

The formal optimality conditions of this space-time minimization prob-
lem turn out to be

v(t, x) = ∇φ(t, x),(10)

where the potentialφ is the Lagrange multiplier of constraints (7), (8), and
the Hamilton-Jacobi equation

∂tφ +
1
2
|∇φ|2 = 0.(11)

In terms of fluid mechanics, this says that the optimal solution is simply
given by a pressureless potential flow.

Let us point out that a continuum mechanics formulation was already
implicitely contained in the original problem addressed by Monge : “le
probl̀eme des remblais et des déblais”. Eliminating the time variable was
just a clever way of reducing the dimension of the problem. However, from
a computational point of view, reintroducing the time variable allows to
solve a convex (although not quadratic) space-time minimization problem
in the density and momentum variables, namelyρ andm = ρv, with linear
constraints, namely (7) and (8), instead of the original one, defined by (4),
which is a quadratic space minimization problem inM , with a non-linear,
non-convex and highly degenerate constraint (2). This is in our opinion a
considerable advantage, in spite of the addition of the extra (but not artificial)
time variable. In addition, the continuum mechanics formulation, provides
a natural time interpolantρ(t, x) of the dataρ0 andρT and a velocity field
v(t, x) which movesρ0 towardρT , which may be useful for practical ap-
plications, in particular for computational vision. (Notice that our approach
is somewhat related to recent techniques used in computer vision based on
elastic motions, such as the geometric approach of [38].)

The new space-time minimization problem will be solved as a saddle-
point problem for a suitable Lagrangian. To do that, a space-time dependent
Lagrange multiplierφ(t, x) will be used for the linear constraints (7) and
(8), the integrand of (9) will be written as a Legendre transform

1
2
ρ|v|2 = sup{aρ + b · ρv ; a +

1
2
|b|2 ≤ 0},(12)

and the corresponding space-time dependent dual variablesa(t, x) ∈ R and
b(t, x) ∈ R

d will also be used. In the saddle-point problem, the original
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unknowns, namely the densityρ and the momentumm = ρv, become the
Lagrange multipliers for the new constraint

a − ∂tφ = 0, b − ∇φ = 0.(13)

Following a classical technique of computational continuum mechanics, the
so-called augmented Lagrangian method [20], the Lagrangian will be aug-
mented by the squaredL2 norm of the new constraint (13) and Uzawa’s
gradient method will be used, corresponding to the so-called ALG2 algo-
rithm of [20]. Because of the use of the dual variables(a, b), each gradient
step amounts to solve three elementary computational problems: Step 1 is
a space-time constant-coefficient Laplace equation inφ with homogeneous
Neumann boundary conditions in space and non-homogeneous Neumann
conditions in time, for which fast solvers can be used, Step 2 is apointwise
minimization ina andb, which amounts to minimize at each space-time grid
point a convex function of one real variable, Step 3 is a trivial updating of
the main unknownsρ andm. So our method is very easy to code and the
computational cost of each iteration of the Uzawa method is nearly optimal.
Numerical examples will be shown, in two space dimensions, on the unit
square with periodic boundary conditions. A non-trivial example will be the
transfer of two shifted periodic arrays of gaussian densities. Our method
will be able to pick up the change of topology of the contour lines due to
the particular geometry of the periodic square.

Let us outline the content of the paper: In Sect. 2, we make a short
review of theL2 MKP, including some elementary examples and possible
applications and extensions. In Sect. 3, we justify Proposition 1.1. In Sect. 4,
we describe the algorithm. Finally, numerical examples will be provided in
Sect. 5.

2. Examples of MKP and generalizations

The assignment problem

The dataρ0 and ρT can be much more general than bounded functions
and probability measures can also be considered [31]. In particular, we can
consider weighted sums of delta functions, such as

ρ0(x) =
1
N

∑
i=1,N

δ(x − xi), ρT (x) =
1
N

∑
i=1,N

δ(x − yi),(14)

where the2N pointsx1 ∈ R
d,...,xN ∈ R

d, y1 ∈ R
d,...,yN ∈ R

d are given.
Then theL2 Kantorovich distance is simply

d2(ρ0, ρT )2 = inf
σ

∑
i=1,N

|yi − xσ(i)|2,(15)
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where the infimum is performed over all permutationsi → σ(i). This is
a particular case of one of the most basic (and polynomial) problems in
combinatorial optimization, the linear assignment problem [3], which has
the general structure

inf
σ

∑
i=1,N

c(i, σ(i)),(16)

where(c(i, j), i, j = 1, N) is a given “cost” matrix. Here

c(i, j) = |xi − yj |2.(17)

This problem can be solved as a linear programming problem, following
Kantorovich’ approach [23], after noticing that (16) can be written

inf
µ

∑
i,j=1,N

cijµij ,(18)

wherecij = |xi −yj |2 is the so-called cost matrix andµ denotes anyN ×N
matrix with nonnegative entries, such that the sum of all columns and rows
is always equal to one. (These matrices, called doubly-stochastic matrices,
define a convex set the extreme points of which exactly are the permutation
matrices). There are nearly optimal algorithms for general cost matrices,
with a computational cost of orderO(N2 log N), such as Balinski’s al-
gorithm [2]. However, to the best of our knowledge, there is no optimal
algorithm for the special structure (17).

The MKP on the real line

In the one dimensional cased = 1, the convexity of potentialΨ just means
that the optimal mass transferx → M(x) is a non-decreasing function.
Thus,M is entirely determined by (2) through∫

y<M(x)
ρT (y)dy =

∫
y<x

ρ0(y)dy, ∀x ∈ R,(19)

which can be easily solved numerically. As a matter of fact, in this case, the
linear assignment problem (16) with cost (17) is equivalent to sorting the
pointsxi andyi in increasing order.

Dilated and translated densities

Let us assume thatρT is compactly supported inRd and obtained fromρ0
through a dilation and a translation

ρT (x) = rdρ(r(x − c)),(20)
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for somer > 0 andc ∈ R
d, andρ0 is normalized so that∫

xρ0(x)dx = 0,

∫
|x|2ρ0(x)dx = 1.(21)

Then it can be checked that the optimal transfer is simply given byM(x) =
r−1x + c, which yields

d2(ρ0, ρT )2 = (1 − r−1)2 + |c|2.(22)

Extension to more complex fluid mechanics models

As already mentioned, the formal optimality condition forρ andv corre-
spond to the evolution of a potential pressureless flow, a very crude model in
fluid mechanics. More interesting models, used in meteorology and oceanog-
raphy, can be related to the MKP. In is well known, for instance, that the
Euler equations for an ideal incompressible fluid

(∂t + v.∇)v = −∇p, ∇ · v = 0,(23)

in which p(t, x) is the pressure field, obey a least action principle [1]. The
Euler equations have been studied as a space-time minimization problem
by Shnirelman [33,34] and Brenier [9,12], and numerically in [32]. In [12],
a generalized MKP is used to characterize the limits of the minimizing
sequences, where the density and velocity fields depend on an additional
variablea ∈ [0, 1] (which correspond to a Lagrangian label). These are
denoted byρ0(x, a), ρT (x, a), for the data andρ(t, x, a), v(t, x, a) for the
unknowns. Constraints (8), (7) are enforced for each value ofa. The problem
is now to minimize

T

∫
Rd

∫ T

0

∫ 1

0
ρ(t, x, a)|v(t, x, a)|2dxdtda.(24)

The new feature of this problem lies in the additional constraint on the
densities at each point(t, x):∫ 1

0
ρ(t, x, a)da = 1.(25)

This equation comes from the incompressibility constraint and pressure
p(t, x) is indeed the associated Lagrange multiplier.

In the simpler case whena is a discrete variable andda the counting
measure, we recover the homegenized vortex sheet model discussed in [11].

The numerical method introduced in the present paper can in principle be
directly generalized to such problems, in which time cannot be eliminated.
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Interpolation of theL2 and the Kantorovich distances

When two densitiesρ0 andρT must be compared, it is very natural to use
theL2 Kantorovich distance. However, sometimes, the regularL2 distance:

dL2(ρ0, ρT )2 =
∫

|ρ0(x) − ρT (x)|2dx(26)

may be more appropriate. Both situations occur in the case of data assimila-
tion for meteorological forecasting (cf. M.J.Cullen, private communication,
see also [18]). A combination of these metrics may therefore be desired for
practical applications. A nice interpolation of theL2 and Kantorovich dis-
tances betweenρ0 andρT , for θ ∈ [0, 1], is naturally provided by the time
continuous formulation, where (8), (7) are unchanged and the cost functional
is replaced by:∫

Rd

∫ 1

0
[(1 − θ)ρ(t, x)|v(t, x)|2 + θ(∂tρ(t, x))2]dxdt(27)

(hereT is normalized to 1). Indeed,θ = 0 andθ = 1 respectively give back
the L2 Kantorovich distance and the regularL2 distance. A remarkable
feature of this problem is its formal optimality condition

(1 − θ)(∂t + v · ∇)v + θ∂tt∇ρ = 0,(28)

which is nothing but the Boussinesq equation without gravity term [37].

3. Justification of the fluid mechanics formulation of the MKP

The proof of Proposition 1.1 is easily obtained by using Lagrangian coordi-
nates. We assumeρ0 andρT to be compactly supported inRd and bounded.
Let us consider (sufficiently smooth) fieldsρ andv satisfying (7), (8). We
use Lagrangian coordinates and defineX(t, x) by:

X(0, x) = x, ∂tX(t, x) = v(t, X(t, x)),(29)

so that, for all test functionsf ,∫
f(t, x)ρ(t, x)dxdt =

∫
f(t, X(t, x))ρ0(x)dxdt,(30)

∫
f(t, x)ρ(t, x)v(t, x)dxdt =

∫
∂tX(t, x)f(t, X(t, x))ρ0(x)dxdt.(31)

Notice first that (8) and (30) imply thatM(x) = X(T, x) satisfies condition
(2), just as the optimal map∇Ψ(x) does. Next, we observe that

T

∫
Rd

∫ T

0
ρ(t, x)|v(t, x)|2dxdt = T

∫
Rd

∫ T

0
ρ0(x)|v(t, X(t, x))|2dxdt
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(by (30))

= T

∫
Rd

∫ T

0
ρ0(x)|∂tX(t, x)|2dxdt

(by (29))

≥
∫

Rd

ρ0(x)|X(T, x) − X(0, x)|2dx

(by Jensen’s inequality)

=
∫

Rd

ρ0(x)|X(T, x) − x|2dx

(by (29) again)

≥
∫

Rd

ρ0(x)|∇Ψ(x) − x|2dx

(because bothX(T, x) and∇Ψ(x) satisfy condition (2), as already men-
tioned, and∇Ψ is the optimal map).

Thus, the optimal choice ofX(t, x) is given by

X(t, x) = x +
t

T
(∇Ψ(x) − x),(32)

which corresponds to the pair(ρ, v) defined by:∫
f(t, x)ρ(t, x)dtdx =

∫
f(t, x + t

∇Ψ(x) − x

T
)ρ0(x)dtdx,(33)

∫
f(t, x)ρ(t, x)v(t, x)dtdx =(34)

∫ ∇Ψ(x) − x

T
f(t, x + t

∇Ψ(x) − x

T
)ρ0(x)dtdx,

for all test functionsf . This completes the proof of Proposition 1.1.

4. The numerical method

The computational domain is the periodic boxD = R
d/Z

d and the following
notations will be used:

– ∇x is the spatial gradient,
– ∇t,x = {∂t,∇x} is the time-space gradient,
– ∆t,x = ∂2

t + ∆x is the time-space Laplacian,
– for two vectors inR × R

d, a, b anda′, b′, {a, b} · {a′, b′} = aa′ + b · b′
denotes the inner product.
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TheL2 MKP can be written as a saddle-point problem by introducing
a space-time dependent Lagrange multiplierφ(t, x) for constraints (7) and
(8). The Lagrangian is given by:

L(φ, ρ, m) =
∫ T

0

∫
D

[
|m|2
2ρ

− ∂tφρ − ∇xφ · m]

−
∫

D
[φ(0, ·)ρ0 − φ(T, ·)ρT ],(35)

where the terms involvingφ come from the integration by part of (7) using
boundary conditions (8).

Given initial and final densitiesρ0 andρT , theL2 MKP is equivalent to
the saddle-point problem:

inf
ρ,m

sup
φ

L(φ, ρ, m).(36)

The (formal) optimality conditions for this problem are:{
∂tφ + |m|2

2ρ = 0, m
ρ = ∇xφ

∂tρ + ∇x.m = 0, ρ(0, ·) = ρ0, ρ(T, ·) = ρT .
(37)

Notice thatm can be eliminated and the equations of a pressureless potential
flow, namely (10), (7), (11) are then recovered.

A new Lagrangian

In this subsection we build a new Lagrangian for which the methods of [20]
can be applied very easily. Let us first observe that, for positiveρ, we have,
pointwise in time and space,

|m(t, x)|2
2ρ(t, x)

= sup
{a,b}∈K

[a(t, x)ρ(t, x) + b(t, x) · m(t, x)](38)

where

K =
{

{a, b} : R × R
d → R × R

d, s. t. a +
|b|2
2

≤ 0 pointwise
}

.

(39)

Notice that the left-hand side of (38) becomes infinite wheneverρ vanishes
orρ is positive andm vanishes. Let us introduce the following variables and
notations:

µ = {ρ, m} q = {a, b}, < µ, q >=
∫ T

0

∫
D

µ · q,(40)
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F (q) = 0 if q ∈ K, +∞ else,

G(φ) =
∫

D
[φ(0, ·)ρ0 − φ(T, ·)ρT ].(41)

We now claim that we can write problem (36) as:

sup
µ

inf
φ,q

[F (q) + G(φ)+ < µ,∇t,xφ − q >] .(42)

To prove this formula, we first use (38) in (35). With the new notations,
we get for (36)

− inf
ρ,m

sup
φ

L(φ, ρ, m)

= sup
ρ,m

inf
φ

[
G(φ) +

∫ T

0

∫
D

(
µ · ∇t,xφ − sup

q∈K
µ · q

)]
.(43)

Hereq = {a, b} is meant to be the dual variable ofµ = {ρ, m}. We now
remark that:∫ T

0

∫
D

sup
q∈K

µ · q = sup
q

[−F (q) +
∫ T

0

∫
D

µ · q]

and we finally get (42) from (43), as claimed.
Such Lagrangian formulations are used in [20] for solving problems of

the form
min

v
{F (Bv) + G(v)} ,

whereF , G are convex functionals andB is a linear operator. In order to
fully comply with the hypothesis onF , G, andB used in [20], we lack
coercivity onF . A simple way to fix this problem is to replaceF by the
perturbed functionFε1 :

Fε1(q) = F (q) + ε1 < q, q > .

However, in practice, we obtain fully satisfactory results just withε1 = 0.

The augmented Lagrangian

In the new saddle-point problem (42), we can now considerµ = {ρ, m} as
the Lagrange multiplier of a new constraint acting onφ, namely

∇t,xφ − q.(44)

(Notice thatφ was the Lagrange multiplier of constraint (7) in the original
saddle-point problem (36).)
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timestep 1 timestep 3 timestep 5 timestep 7

timestep 9 timestep 11 timestep 13 timestep 15

timestep 17 timestep 19 timestep 21 timestep 23

timestep 25 timestep 27 timestep 29 timestep 31

Fig. 1. Contours plots of the density at successive time steps

Thus, we define theaugmentedLagrangian:

Lr(φ, q, µ) = F (q) + G(φ)+ < µ,∇t,xφ − q > +
r

2
< ∇t,xφ

−q, ∇t,xφ − q >(45)

wherer is a positive parameter and the corresponding saddle-point problem

sup
µ

inf
φ,q

Lr(φ, q, µ),(46)

which clearly has the same solutions as (36).

The algorithm

A simple algorithm of [20], called ALG2, based on relaxations of the Uzawa
algorithm is now used to solve the problem. We get a three step iterative
method which constructs a sequence(φn, qn, µn) converging to the saddle-
point.
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timestep 1 timestep 3 timestep 5 timestep 7

timestep 9 timestep 11 timestep 13 timestep 15

timestep 17 timestep 19 timestep 21 timestep 23

timestep 25 timestep 27 timestep 29 timestep 31

Fig. 2. Contours plots of the density at successive time steps

ALG2

– (φn−1, qn−1, µn) are given.
– Step A: Findφn such that :

Lr(φn, qn−1, µn) ≤ Lr(φ, qn−1, µn), ∀φ.(47)

– Step B: Findqn such that :

Lr(φn, qn, µn) ≤ Lr(φn, q, µn), ∀q.(48)

– Step C : Do

µn+1 = µn + r(∇t,xφn − qn)(49)

(wherer > 0 is the parameter of the augmented Lagrangian).
– Go back to step A.

Step A and B are simply a relaxation method for the minimization part
of the saddle-point problem. Step C is a gradient step for the dual problem.
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timestep 1 timestep 3 timestep 5 timestep 7

timestep 9 timestep 11 timestep 13 timestep 15

timestep 17 timestep 19 timestep 21 timestep 23

timestep 25 timestep 27 timestep 29 timestep 31

Fig. 3. Contours plots of the density at successive time steps

Step A
To get Step A, we differentiateLr with respect toφ and get forφn :

G(φ) + r < ∇t,xφn − qn−1,∇t,xφ > + < µn,∇t,xφ >= 0, ∀φ.

After integrating by part in space and time, we see that this is the variational
formulation of the space-time Laplace equation

−r∆t,xφn = ∇t,x · (µn − rqn−1)(50)

with periodic boundary conditions in space and Neumann boundary condi-
tions in time :

r∂tφ
n(0, ·) = ρ0 − ρn(0, ·) + ran−1(0, ·),(51)

r∂tφ
n(T, ·) = ρT − ρn(T, ·) + ran−1(T, ·).(52)

Recall thatµn = {ρn, mn} andqn−1 = {an−1, bn−1}.
Note that this Neumann problem is well posed since∫

D
[ρ0 − ρT ] = 0.
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grid 31x64x64 timestep 3 timestep 5 timestep 7

timestep 9 timestep 11 timestep 13 timestep 15

timestep 17 timestep 19 timestep 21 timestep 23

timestep 25 timestep 27 timestep 29 400 iterations 

Fig. 4. Contours plots of the density at successive time steps

In practice, for programming simplicity, we use the perturbed Laplace equa-
tion

−r∆t,xφn + rε2φ
n = ∇t,x · (µn − rqn−1)

whereε2 is a small positive parameter.

Step B
We cannot differentiateLr with respect toq andqn is simply obtained by
solving

inf
q

[
F (q) +

r

2
< ∇t,xφn − q, ∇t,xφn − q > + < µn,∇t,xφn − q >

]
,

which is equivalent to :

inf
q∈K

< ∇t,xφn +
µn

r
− q, ∇t,xφn +

µn

r
− q > .

It is important to notice that this minimization can be performed pointwise
in space and time. Indeed, let us set:

pn(t, x) = {αn(t, x), βn(t, x)} = ∇t,xφn(t, x) +
µn(t, x)

r
.
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Thenqn(t, x) = {an(t, x), bn(t, x)} is obtained by solving in(a, b):

inf
{

(a − αn(t, x))2 + |b − βn(t, x)|2, a +
|b|2
2

≤ 0
}

This turns out to be a simple one dimensional projection problem which can
be computed analytically or using Newton’s method.

Step C
Step C is simply the pointwise update :

µn+1(t, x) = µn(t, x) + r (∇t,xφn(t, x) − qn(t, x)) .

Cost and convergence criterium

Among these three steps, only Step A is global. This means that the cost of
Step B and C are of orderO(N) whereN is the number of points of the space
time lattice. The Laplace equation (step A) can be solved inO(N log N)
operations. The cost of this methods is therefore of orderN log N times the
number of iterations inn needed for converge.

We do not have theoretical estimates on the speed of convergence of the
method. To be able to produce numerical estimates and also for the practical
purpose of stopping the computation we need to define a convergence cri-
terium. The optimality conditions (37) are useful for that purpose. We can
indeed use the residual of the Hamilton-Jacobi equation (11), namely

resn = ∂tφ
n +

|∇xφn|2
2

which is a by-product of the algorithm. This quantity converges to0 as we
approach the solution of problem. The normalized convergence criterium
used is

critn =

√√√√ ∫ T
0

∫
D ρn|resn|∫ T

0

∫
D ρn|∇xφn|2

.(53)

5. Numerical results

We present numerical tests performed on the unit square with periodic
boundary conditions in space. The space-time domain is discretized us-
ing a regular32 × 32 × 31 lattice. The parameters of the method are taken
asε2 = 0.001 andr = 1. As usual for gradient method convergence rate
quickly decays. However, a moderate number of iterations (about 30 for
smooth data and few hundreds for piecewise constant data) is enough to get



A CFD solution to the Monge-Kantorovich problem 391

good approximate solutions in practice. We show for different time steps
the level curves of the approximate solutionρ. The final value ofρ at time
step31 always matchρT .

Test 1

The exact solution of this problem set in free space is the translation of a
gaussian density (Fig. 1). There is no noticable effect of the periodic bound-
ary conditions.

Test 2

Because of the periodic boundary conditions, this experiment
amounts to shift along the diagonal an infinite lattice of gaussian functions.
The optimal transfer is not a simple translation as could be primarily thought
but rather prefers to split each gaussian functions into four pieces, sending
each of them to the nearest corner (Fig. 2).

Test 3

Here, we perform a test similar to Test 1, but with a step function fitting
an ellipse and a larger translation. As we use periodic boundary conditions
in space, a part of the mass is transferred across the periodic boundaries
(Fig. 3). To get a higher resolution, a32 × 64 × 64 grid has been used, with
400 iterations.

Test 4

Here we perform both translation and rotation of a step function fitting an
ellipse. Once again, there is a substantial transfer of mass across the bound-
ary due to the periodic conditions (Fig. 4). Small errors produce scattered
pebbles.
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